

Applications

- Wine Prefiltration
- Paints and Inks
- Chemicals
- Oil / Gas
- Blowdown Postfilter
- Magnetic Tape Coatings

Commercial / Industrial Filtration Applications

Standard Features

- Manufactured in USA
- High efficiency retention ratings from 0.2 to 30 microns
- Optimal surface area designed for maximum throughput and high dirt-holding capacity
- Borosilicate microglass media with polypropylene hardware construction offers wide range of chemical compatibility
- Uniform and fixed pore construction eliminates unloading under high differential pressures
- Long service life reduces operator costs
- Rigid, molded cage protects pleated media and strengthens structural stability
- Manufactured in state-of-the-art white room manufacturing environment for high purity
- Available in standard lengths and end cap configurations fits most filter housings

Specifications, Operating Parameters and Options

Micron Sizes

0.2, 0.45, 1.0, 3.0, 10.0, and 30.0

Nominal Lengths

9-3/4", 10", 20", 30", and 40"

Inside and Outside Diameters

1.0" (2.54 cm) ID, 2.67" (6.78 cm) OD

Media Surface Area

5.0 sq. ft. (0.46 m2) per 10 inches filter length

Maximum Operating Temperature

176°F (80°C) temperature limit

Recommended Change-Out Differential Pressure

35 psid (2.4 bar)

Maximum Differential (Collapse) Pressure

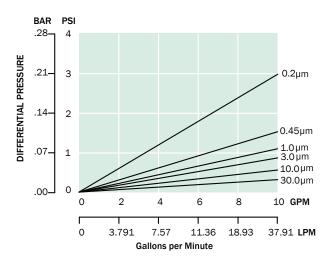
80 psid@70°F (5.5 bar@21°C), 40 psid@150°F (2.75 bar @60°C)

Materials of Construction

Filter media: borosilicate microglass

Support layer: polyester

Cage and end caps: polypropylene


FDA and **USP** Compliance

All materials comply with FDA requirements for food contact per CFR Title 21 177.1520. All components meet USP Class VI Plastic biological reactivity tests.

Ordering Guide (Example: HP-MG-26100-0.2213-T)

HP -	- MG	- 26	100 -	- 0.2	213 -	- Т
HIGH PURITY PLEATED	MEDIA	CARTRIDGE DIAMETER	CARTRIDGE LENGTH	MICRON RATING	END CAP	O-RING / GASKETS
НР	MG = Microglass	26 = 2.67" (6.78 cm)	097 = 9-3/4" 100 = 10" 200 = 20" 300 = 30" 400 = 40"	0.2 = 0.2 0.45 = 0.45 1 = 1.0 3 = 3.0 10 = 10.0 30 = 30.0	Blank = DOE (standard) 213 = 213 internal O-ring 222f = 222/Flat 222n = 222/Fin 222s = 222/Spring 226f = 226/Flat 226n = 226/Fin SOEf = SOE/Flat SOEs = SOE/Spring SOEn = SOE/Fin Z = Custom	E = EPDM B = Buna N S = Silicone V = Viton T = Teflon

Flow vs. Pressure Drop

This chart represents typical water flow per 10" cartridge length. The test fluid is water at ambient temperature. Extrapolation for multiple elements tends to be linear, but as flows increase the ΔP of the housing becomes more apparent.

Filter Removal Efficiency

MICRON	BETA 10	BETA 100	BETA 1000
	90%	99%	99.98%
0.2 micron	0.20	0.6	1.0
0.45 micron	0.45	0.8	2.0
1.0 micron	1.0	2.0	4.0
3.0 micron	3.0	5.5	10.0
10.0 micron	10.0	15.0	18.0
30.0 micron	30.0	37.0	44.0

Available End Cap Configurations

All illustrations © Copyright 2013 NeoLogic Solutions. All Rights Reserved.

DISTRIBUTED BY: